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In this paper a multigrid method for the solution of the steady semiconductor equations is
presented. The discretization is made on an adaptive grid, by means of a mixed finite element
method on rectangles, with the trapezoidal quadrature rule. In this way the resulting scheme
reduces to the well-known Scharfetter-Gummel discretization. The grid transfer operators are
selected in accordance with the discretization. The multigrid solution method is based on a col-
lective, symmetric five-point Vanka relaxation, and—in order to admit very coarse grids—a local
damping of the coarse grid correction is applied. It is shown that the convergence rate is independent
of the grid size. Since nested iteration is combined with the multigrid iteration, the resulting
solution method has optimal efficiency. © 1990 Academic Press, Inc.

1. INTRODUCTION

There has been a great deal of interest recently in the numerical simulation
of the electric behavior of semiconductor devices. For a survey see [1-4].
Various programs that solve such problems for an industrial environment are
now available. However, it has also become clear that there is still an increasing
demand for faster and more flexible and robust programs. The model that
describes the distribution of the electric field and the concentration of carriers
in a semiconductor, the drift—-diffusion model, is a system of three nonlinear
elliptic partial differential equations: a nonlinear Poisson equation and two
continuity equations.

It has been known for some time now that multigrid (MG ) methods are
possibly the most efficient for such equations, because the computational
effort for solving the large discrete systems can be proportional to the number
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of unknowns. Therefore various attempts to apply MG to the simulation of
semiconductor devices have already been made [5-7]. However, up to now
for several reasons, the success was not up to the expectations. It appears that
the coarsest level of discretization, used in the sequence of grids, still has to
be rather fine, and therefore requires a significant computational effort.

This is due to the fact that there are several difficulties associated with
solving these equations. First, the equations are of a singular perturbation
character and the dependent variables may vary rapidly over small regions
of the device. Second, the system is strongly nonlinear and the equations are
badly scaled.

These difficulties require a careful discretization, for which the requirements
will include conservation of charge (electrons and holes) and nonnegative
solutions. The demands are well known now, but they ask for special attention
in the case of a multigrid method, where one wants to construct a sequence
of discretizations starting from very coarse meshes. Further, for a multigrid
method one needs grid transfer operators between the coarser and finer grids.
Such operators usually function best when they are chosen consistently with
the discretization method used. These considerations, and the knowledge that
the fluxes of the solutions are usually smoother functions in space than the
scalar-dependent variables, make it desirable for us to apply a mixed finite
element method for the discretization of the equations.

In order to avoid unnecessary computations, to handle irregular geometries,
and to obtain the required accuracy in an efficient manner, it is also desirable
to have a finer mesh in regions where the solution is varying rapidly, and a
coarser one in regions where it is varying slowly. Therefore we introduce an
adaptive mesh refinement method that fits with the multigrid method used.
Surveys of adaptive procedures are found, e.g., in Babuska and Rheinboldt
[8] and Oden [9]. Application in the context of multigrid is found, e.g., in
Schmidt and Jacobs [10].

The multigrid method presented in this paper is a further development of
earlier work that was done in one dimension [11-13] for the drift-diffusion
model and in two dimensions for the nonlinear Poisson equation [14]. New
aspects in the present results are the use of Vanka relaxation for this set of
equations, the application of a special kind of damping for the coarse grid
correction (in the MG method ), and the use of appropriate minimizing func-
tionals for the selection of initial estimates.

An outline of the paper is as follows. In Section 2 we present the equations
solved, and in Section 3 the grid and data structure used for the adaptive
discretization. The discretization itself is explained in Section 4. In sections
5, 6, and 7 we describe the multigrid method and give details about the Vanka
relaxation and the adapted coarse grid correction. In Section 8 we describe
the construction of the initial estimates, and finally, in Section 9 we report
numerical results. First, the convergence of the multigrid iteration is dem-
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onstrated for uniform grids, and then an example is shown of a solution on
a self-adapted grid.

2. THE EQUATIONS

A steady semiconductor device can be modeled by

-V-J,=¢q(p—n+ D), (2.1a)
_V.Jn 3 -—qR’ (2.1b)
=V-J, = +¢gR, (2.1c)

where J,, J,,, and J, are defined by

Jy = VY, (2.2a)
1 1
J,,=qu,,(; Vn—-n(Vx[/-l-;Vlog ni)), (2.2b)
1 1
J, = —q,u,,(; Vp+p(v¢— ;Vlog n,«)) . (2.2¢)

Equation (2.1a) is Poisson’s equation; n and p are the concentrations of elec-
trons and holes, respectively, and the dope function D is a given function of
the space variable. The relation between the electric displacement current J,
and the electrostatic potential ¢ is given by (2.2a). Equations (2.1b) and
(2.1c) are continuity equations; J,, and J, represent the electron and hole
current densities, respectively, and R is the recombination rate of electrons
and holes. The quantities g, ¢, «, n;, u,, and u, are the electron charge, the
permittivity, the inverse of the thermal voltage, the intrinsic concentration
of free charge carriers, and the electron and hole mobilities, respectively. For
simplicity, in the present paper we only consider constant ¢, «, 7;, u,, u, and
R = 0. The problem, simplified this way, corresponds to the example problem
used, e.g., in [2]. It preserves many of the characteristic difficulties found in
practical problems, where—based on physical models—different nonlinear
functions are used, e.g., for u,, u,, and R. For details we refer to [2].

In our calculations we use the quasi-Fermi potentials ¢, and ¢,, which are
related to » and p by

n = nesv e (2.3a)

p = neter ), (2.3b)
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Expressed in (y, ¢,, ¢,) the equations are strongly nonlinear, but the range
of the values assumed by(y, ¢., ¢,) is of the same order as the voltages
applied to the device. This makes them better suited for numerical compu-
tations than, e.g., (¢, n, p) for which the range of values is much wider
(cf. [2]).

Using (2.3) we write (2.2) in terms of (¢, ¢p, ¢,),

J, = Wy, (2.4a)
I = —iine™¥ I Y(agy), (2.4b)
J, = *ﬁpe“("’”"p)V(ad)p), (2.4¢)

with
T (2.5)

For the discretization of the equations (2.1)-(2.2) we use the Slotboom vari-
ables (¢, ,, ®,), which are defined by

&, = e, (2.6a)
&, = et (2.6b)

Expressed in these variables (2.2) becomes

J, = VY, (2.7a)
J, = +i,e™ Ve, (2.7b)
J, = —fie YV, (2.7¢)

The numerical range of the set of variables (¢, ®,, ®,) renders them unsuitable
for practical calculations, but they are attractive from a theoretical point of
view because it makes the individual continuity equations symmetric (without
first-order derivatives) and linear in &, and &,.

For an elaborate discussion of the choice of variables, see [2].

3. GRID AND DATA STRUCTURE
It is well known that the semiconductor equations show sharp layers in

their solution, so it is attractive to use adaptive grids. In this section we present
a method of grid generation that is very suitable for local refinement (cf. [10,
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15]) and that can handle a fairly wide range of geometries encountered in
device simulation.

It is assumed that the domain Q C R?, on which the equations (2.1)-(2.2)
have been defined, can be covered by a regular mesh of rectangular blocks.
A subset of these blocks should exactly cover Q and these blocks form the
coarsest grid G° in a sequence of nested grids for the discretization of
(2.1)=(2.2).

On a set of blocks a refinement operator ¢ is defined as the set-valued
mapping, which splits one block Q¢ of the grid into four smaller ones (see
Fig. 3.1)

The class Q of admissible grids is specified recursively by two rules:

1L.G°e0,
i.Ge Q= o(G)E Q. (3.1)

The level / of a block Q! is defined as the minimum number of refinement
steps between Qf and a block of G°. Using this definition we can classify the
grids: a grid G/ of level [ is the set of all blocks Q. If a locally refined grid is
used, there are interfaces between grids of a different level (see Fig. 3.1).
Following Schmidt and Jacobs [10] such interfaces are called “‘green” in-
terfaces.

In this way a nested sequence of partitionings of the domain § is obtained.
Finer meshes may cover parts of @, but as soon as a fine level mesh exists in
some area, also all coarser levels are available. The data structure used for
the implementation, a quad tree, reflects this structure of the grids. In every
node of the tree (a block or “cell”) there are four pointers to possible offspring.
The leaves of the tree correspond to unsplit blocks. In addition, every node
contains four pointers to interfaces, representing the sides on the block.
Neighboring blocks on the same level are connected by their common inter-
face. These interfaces are also used to distinguish between green interfaces
and physical boundaries.

To accommodate general geometries, the root of the tree does not need to
represent G°. So the first (negative) levels in the quad tree may contain entries,
which are not necessarily related to a part of the domain. However, there

F1G. 3.1. Refining the mesh by a refinement operator o.
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must be a level in the tree which corresponds to G° exactly. The different
numerical operations on data in the data structure are made by procedures
that scan all cells, or all cells that satisfy a specific condition (e.g., all cells on
a specified level), and which operate on each cell that is visited.

4. DISCRETIZATION

To discretize (2.1) and (2.4) we use the mixed finite element method,
based on lowest order Raviart-Thomas elements for rectangles [16]. By the
use of a suitable quadrature rule the discretization is equivalent to the well-
known Scharfetter-Gummel scheme.

Boundary conditions are either Dirichlet or Neumann; the corresponding
parts of the boundary are denoted by éQp and 6Qy, respectively.

Before we describe the discretization, we note that all three equations, ex-
pressed in Slotboom variables, can be written as

V-.u= R(¢,x), (4.1a)
alu= Ve, (4.1b)
u-n =0, at 0Qy, (4.1¢)

¢ =¢p, at 6Qp, (4.1d)

where ¢ is a scalar and u a vector variable; n is the outward unit vector normal
to 6.

Let L,(Q) be the space of square integrable functions on €, with inner-
product

(6, 7)1, = L ¢-7dQ

and let H(div, Q) be defined by
H(div, Q) = {ulu € (L,(2))% divu € L,(Q), u-n = 0, at 6Qy},
with norm
ful }-l(div,ﬂ) = [lu %Lz(ﬂ))z + [div u]| 2Lz<n)-
By introduction of the product space

A(Q) = L,(2) X H(div, Q),
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the weak formulation of (4.1) is the following: find (¢, u) € A such that for
all (1, t) E A

(r,divu) = (r, R), (4.2a)
(a™'u, t) + (¢, divt) = (dp, t), (4.2b)
where
(¢, t>=f ¢t-ndl. (4.3)
8Qp

The Neumann boundary conditions are automatically satisfied by all u
€ H(div, Q).
On each grid G/, (4.2) is discretized by the lowest order Raviart-Thomas

elements. For every block Q! of grid G’ we define the indicator function e/
€ L,(Q),

0, X & Q,
eh(x) = (4.4)
1, x € QL

In addition, according to [16]. a vector function e/ is introduced for every

edge E,’, not part of the Neumann boundary, such that e,(\) is linear on
blocks ©/ and

el-nf =8y, (4.5)
where 6, denotes the Kronecker delta and n} denotes the outward unit vector
normal to E}; this choice ensures e € H(div, Q).

The discrete spaces spanned by { ¢!} and { e/} are called L'(Q') and H'(div.
Q"), respectively. Their Cartesian product space is

AlQh = L)) x H!(div, ).

The discrete approximation (¢, u’) of the solution (¢, u) of Eq. (4.1) on grid
G'is

d) Z d)léu (4.6a)

Z ujel. (4.6b)
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The summation in (4.6a) is over all blocks Q!in grid G’, and in (4.6b) over
all edges E!, not part of the Neumann boundary.

To discretize (4.2)-(4.3) we replace A by its discrete analogue Al To form
the discrete equations we use 7 = ¢! for the test functions 7 in (4.2a), and for
tin (4.2b) we take t = e,’-. Thus we obtain an algebraic system for (¢,, w,),
i.e., the vector of coefficients { ¢}, u!}:

L )= () “

The matrix coefficients in this system are obtained by evaluation of the different
integrals; however, we change the discretization by replacing the exact eval-
uation of the integrals, appearing in the elements of W, by a quadrature based
on the four corners of each cell,

L:.""“fei)dﬂ: 2 ej(x,)- ek(x,) fm a”'dQ,  (48)

rv=14

where the cell Q!, with vertices x,, is subdivided into four equal pieces
(2),, as shown in Fig. 4.1. Because of (4.5), repeated use of this quadrature
rule approximates 1" by a diagonal matrix, with elements

ij."_’ 6kj( 2 f ; a—ld9>. (49)
(QM)x

s=1,4

The summation in (4.9) is over the four small pieces (Q4,), adjacent to edge
El; (see Fig. 4.1).

For Poisson’s equation the coefficient ¢ ™' appearing in (4.1b) is the constant
¢~'; so the relation between the displacement current (J, )}, at edge E’, (with
length A,,) and the potentials ¢4 and Y% in the neighboring blocks Q4 and

L M R

FIG. 4.1. Division of cells for approximation of elements of W.
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Q% (cf. Fig. 4.1) is

2%y

[ _ 1
(Jy)a =€ (@ + an) (Vr— V1), (4.10)

where a; = area (Q}) and ag = area (Qk).

For the continuity equations a ™' is an exponentially varying function. Al-
though /' approximates ¥ as a piecewise constant function, we assume for
the evaluation of (4.9) that ¢, can be linearly interpolated between ', and
Y. This leads to the ScharfetterGummel discretization of the continuity
equations (cf. [2]):

_ 2h —a(Yh =YLy VAN
T M R L alén)r a(dn)r. 4.11
(Jn)M Mn (aL + ag) e-mﬁﬁe B e—mbi (e e ), (4 a)

_ 2hy alyk—h) ! ’
N; - M R L a(cpp)R - Of(d’p)L . 4.1 1b
(obe = ity (a; + agr) emﬁfv - e"“’i (€ ‘ : ( )

Dirichlet boundary conditions can be treated consistently by introducing cells
with zero area at the boundary.

To treat green interfaces we use the Lagrangian multipliers (\4)!, which
are defined on edges Ej (cf. [17]). The Lagrangian multipliers are calculated
by using discontinuous, piecewise linear test functions t & H'(div, &') in the
weak formulation of (4.1b). If quadrature rule (4.8 ) is used, and the integrals
in (4.9) are approximated as before, we obtain (see Fig. 4.1)

ar¥r + aryr
(>\¢)ﬁ1=—@'—+——£—, (4.12a)
ap T ag
! ! ! 1 ! !
- a - - - —apL
! e donlL(p R — oMY L o bR~ ¥ M _ o=
o-ethenl = ( ) il ) (a.12m)
e"a\PR — e—mh.
! I 1 / ! i
; Adp)L (R — oo¥M) 4 X EpIR(p¥M e
gty = €1 ) e M ) (4.12¢)
ea\PR — eﬂ\LL
with

Yhe = (\)hs

These Lagrangian multipliers are an approximation of the solution at the
edges (cf. [17]). So, at a green interface we calculate the Lagrangian multiplier
on the finest grid on which the interface is not green and use this value as a
Dirichlet boundary condition on the finer grids.
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This concludes our discussion of the discretization of (4.2). By the use of
our quadrature rule and the Slotboom variables we finally arrive at a discre-
tization that is equivalent with the Scharfetter-Gummel scheme. The mixed
finite element method is useful for the consistent construction of a nested set
of discretizations on the different levels. In fact, the interpolation defined by
(4.12) corresponds with the nonlinear interpolation introduced for the semi-
conductor equations in [11]. The sequence of discretizations is used to solve
the discretized nonlinear system of equations by a multigrid algorithm.

5. MULTIGRID

The full approximation scheme [18] or nonlinear multigrid (NMG) scheme
[21] is a multigrid iterative approach for solving sets of nonlinear equations
obtained by discretization. For some classes of elliptic equations it is optimally
efficient in the sense that the rate of convergence is independent of the mesh
size. Another advantage is that large linear systems need to be neither solved
nor stored. Generally, we write the discrete equations on grid G' as

n'(g" =11, (5.1)
where Rt/ is the discretized nonlinear operator. Let ¢’ be an iterative approx-

imation to ¢'. Better approximations can be obtained by classical relaxation
methods (Jacobi, Gauss-Seidel, etc.), which reduce the residuals ¢/,

d'=f'-2n'(q"), (5.2)
and, in particular, they efficiently damp the high-frequency components of
the residuals. The low-frequency components are better reduced by solving
the residual equation on a coarser grid G'™'. Let ¢"~' be some coarse grid
approximation of ¢’, then solve on grid G'~!

Rt = wFgt + R (5.3)

with R A/(Q) — AT'(Q7"), a restriction operator. A better approximation
¢'to 7'is then obtained by

g'=q"+ PL(3"") — Pli(¢"), (5.4)
with Pi;: A7N(Q7')y = AY(Q'), a prolongation operator. Instead of solving

(5.3) exactly, we approximate its solution either by a few iteration steps of a
relaxation procedure or by a few cycles of the NMG procedure that makes
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use of an even coarser grid. In this way the NMG algorithm is recursively
defined.

If adaptive grids are used, the residual 4’ is not necessarily computed ev-
erywhere on Q; if a grid G’ does not exist in some area, the residual 4 is
locally defined to be equal to zero.

As initial approximation ¢’~! in the iterative process for the solution of
(5.3) we do nor use a restriction of a solution on a finer grid, as described in
[18], but we take the last available iterand on the coarse grid. Such iterands
are always available, because initial approximations for a finer grid are pro-
duced by interpolation from some approximation earlier computed on a
coarser grid. Details and modifications of the coarse grid correction will be
described in Section 7, whereas in Section 8 the construction of initial estimates
on coarse grids is treated.

6. RELAXATION

Previous experience with the nonlinear Poisson equation (cf. [14]) indicated
that an adapted five-point Vanka-type relaxation (cf. [19]) is a good candidate
for a relaxation method. By this method, all cells are successively scanned,
first in forward, later in backward lexicographical order, and for each cell
Q! the three nonlinear equations (4.7 are solved for the potentials ¢/ and the
fluxes 1/ corresponding with the four edges E! of the cell @/ (see Fig. 6.1).

From this 15 X 15 system the fluxes uj’- are eliminated by (4.10)-(4.11).
The resulting nonlinear 3 X 3 system could be solved by Newton’s method,
but it is possibly i1l conditioned, if the initial guess is too far from the solution.
Gummel’s iteration (where the three nonlinear equations are solved sequen-
tially ) appears to be a more robust method for solving the nonlinear systems,
and robustness is enhanced by solving Poisson’s equation exactly in each
Gummel step. The continuity equations to be solved in Gummel’s iteration
are linear if expressed in ®, and ®,. However, to avoid calculations in Slot-
boom variables, we calculate corrections d¢ (™ and dg " to the quasi-Fermi
potentials ¢ (" and ¢ " as for Newton’s method for each continuity equation,

FIG. 6.1. Relaxation subdomain for five-point Vanka relaxation.
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and then apply the correction transformation (see [2]):
1
D = ) — Zog(1 — adep (M), (6.1a)
o
l
o5 = oM + —log(1 + adp™). (6.1b)
o

Without rounding errors, this would solve the continuity equations in a single
step; in practice a small number of iterations may be necessary. Large cor-
rections may yield negative arguments for the logarithmic function. If this
happens, we damp the correction by replacing the function log(x) in (6.1)
by a C'(—w, o) function identical to log(x), for x > x;. In practice, where
the machine accuracy is 15 digits, we use (see [11])

modlog(x) = log(xo) + sgn(x)[log(|x — xo| + xo) — log(xo)|, (6.2)

with xo = 0.5 X 1077,
In the following we describe how the local Poisson equation is efficiently
solved by a modified Newton method. To simplify notation and without loss

of generality, we write the Poisson equation, appearing in Gummel’s iteration,
as

asinh ¢ + bj =1, (6.3)

with a > 0. In principle Eq. (6.3) is solved by Newton’s method; however, if
the Jacobian is dominated by the sinh function, it is better to linearize the
equation with sinh y as a new variable. A suitable correction transformation
strategy for the iterands ¢ ¢ in Newton’s method, which switches between
the two linearizations, is

arcsinh (sinh ¢ + dy cosh ™), if

(n+1) — ‘>
ll/ -

Y 4 dy, otherwise.
(6.4)

The iteration is stopped if | dy | is sufficiently small (less than 107'?).

If the last available iterand is taken as the initial guess for Newton’s method,
we observe that large, untransformed corrections dy (") may cause overflow.
To avoid this situation the process is restarted with a better initial estimate
as soon as an untransformed correction is too large (| dy ‘| > 1.0 V). Two
possible initial estimates for (6.3) are y (*) = arcsinh(1/a) and v @ = 1/(a
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+ b). To judge the feasibility of these initial estimates, we use the fact that
the solution ¢ of (6.3) minimizes the convex functional

5

F(¢)=acosh¢+bé—¢. (6.5)

If the initial estimate ¢ (), for which F attains a minimal value, is chosen as
the new initial estimate, Newton’s method converges rapidly (within four
steps in the cases we studied).

This concludes our description of the solution method for the small non-
linear systems appearing in five-point Vanka-type relaxation. To illustrate
the robustness of this method, we use a 2D diode test problem (see Section
9), with either a forward biased (—1.0 V) or a reverse biased (+5.0 V) applied
voltage. The performance of the relaxation process is shown in Table 6.1.
Starting from a 4 X 4 grid, we perform two symmetric relaxation sweeps on
every grid, before we interpolate the solution to a next finer grid. (Here, no
coarse grid corrections are applied.) The finest grid used is a 64 X 64 grid. In
Table 6.1 we show results for the cases where either Poisson’s equation is
solved exactly in each Gummel step or the solution of Poisson’s equation is
approximated by a single step from a Newton iteration, using the last available
iterand as initial estimate. In both cases the Gummel iteration is stopped if

ldy ™| + [doi” | + |dggm| < 107"

From Table 6.1 we see that the efficiency of Gummel’s iteration is good,
even in the forward biased case, in which the equations are strongly coupled.

TABLE 6.1
SOLUTION OF SMALL NONLINEAR SYSTEMS BY GUMMEL'’S ITERATION

Reverse bias Forward bias

1 Newton Solve 1 Newton Solve

step exact step exact

No. of processes 21.824 21.824 21.824 21.824
Mean No. of Gummel its. 2.8 2.8 4.2 4.1
Max No. of Gummel its. 9 8 9 9
Mean No. of steps for (6.3) 1.0 1.4 1.0 2.0
Max No. of steps for (6.3) 1 6 1 6
Divergent process 27 0 0 0

Note. A “process™ is the solution of a 3 X 3 nonlinear system, by Gummel iteration. The
“number of steps for (6.3)” is the number of Newton steps to solve Poisson’s equation in Gummel’s
iteration. A process is divergent if Gummel’s iteration does not converge within 25 steps.
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Solving Poisson’s equation exactly during each step does not improve the
efficiency of Gummel’s iteration, but robustness is enhanced indeed.

7. THE COARSE GRID CORRECTION

In this section the coarse grid correction, mentioned in Section 5, is discussed
in more detail. The grid transfer operators P)_; and R/™! are introduced, and
we explain why these simple transfer operators have to be adapted in regions
where the solution exhibits sharp shifts.

The prolongation P/_,, which transfers solutions from coarse to fine grids,
is induced by the nesting of the spaces A~ (Q/~') C A/(Q'). This implies that
any function (¢!, u'™') € A"'(Q""") can also be considered an element of
Al(Q"), with a unique representation given by (4.6). The restriction operator
RI™', which transfers residuals from fine to coarse grids, is defined as the
transpose of Pi_,.

If the coarse grid problem is solved exactly in (5.3), the errors, before and
after the coarse grid correction, are related by

§'= 3= U}~ PLa(" (@™ ) RE (@) (g'-d) + OUIR 1),
(7.1)

where

aN'(q)

JI Iy —
(g) 3%

(7.2)
is the Jacobian matrix and I the identity matrix.

As pointed out by De Zeeuw [13] for a one-dimensional case, the local
value of the diagonal elements in the Jacobian matrix J'~! and J' can differ
by orders of magnitude in the neighborhood of sharp layers, because g’ ! is
not a good representation of ¢’. From (7.1) we see that in these regions prob-
lems can be expected. If an element of J'~! is much smaller than the corre-
sponding elements of J, the error is locally blown up by the coarse grid
correction. De Zeeuw proposed to damp the restricted residual in order to
avoid such problems. Here we apply a similar technique for the two-dimen-
sional case.

For every cell @', which is split into four cells Q/, we determine the

damping factors #/;' by locally comparing the diagonal elements of the Ja-
cobian matrices J/ and J'':

__ Wahan@™h
supj-1.4 | J oG ()]

D
—

k = tl/’ ¢na ¢p> (7.33)
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04 = min(20%3', 1). (7.3b)

The second step (7.3b) is added to avoid damping, if it is not necessary. If
Q" is not split, we set 87 = 1.

By introduction of these damping factors the formulation of the coarse grid
problem (cf. (5.3)) becomes

‘72[ 1~1 T — ,J\[ 1,,/-1 @I—lkrldl (7'4)
where ©°! is a diagonal matrix, with elements
Olhin =0, k=1, ¢n. 6. (7.5)

If the mesh becomes fine enough, sharp layers are well resolved, the coarse
and fine grid Jacobians gain in similarity, and the damping disappears, as we
see from (7.3).

However, only damping the restricted residual does not guarantee that
there will locally be no spurious corrections to the fine grid solution, if the
grids are relatively coarse. We also find it necessary to suppress the coarse
grid correction locally, if layers are not properly resolved. In fact, we suppress
the coarse grid correction from a cell /!, split into four cells Q/, if

sup|(7¢" — ()i = (5 — (2] = (¢h) — (o)) > 1.0. (7.6)

This means that the correction is suppressed if the ratios (#/p) on the fine
and the coarse grid are much different. In the context of the multigrid algo-
rithm, the need for damping restricted residuals and suppressing coarse grid
corrections can be understood as follows.

Locally the coarse grid solution is a bad representation of the fine grid
solution, because the grids are too coarse. However, it is known that even
very coarse grids still may help to reduce low-frequency error components.
By locally damping the interaction between the grids, we are still able to
reduce these low-frequency error components in some parts of the solution,
without exciting high-frequency error components in other parts. If necessary,
additional local relaxation can reduce errors in regions where the interaction
between the grids is affected by damping; in our numerical experiments, how-
ever, this does not influence the observed convergence behavior.

8. THE INITIAL ESTIMATE

To start the multigrid algorithm, we first have to compute a solution on
the coarsest grid. Initial estimates on finer grids are obtained by interpolation
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from a coarser one. On the coarsest grid, we use a continuation strategy for
the applied voltages at the contacts.

Starting at a voltage that yields a simple problem (e.g., zero voltage at all
contacts), we change the boundary condition stepwise to its final value. On
the coarse grid moving from one applied voltage to the next, we take the
following steps: (i) change boundary conditions; (ii) find an initial approxi-
mation for these new boundary conditions; and (iii) improve this approxi-
mation iteratively. The iterative improvement of the coarsest grid approxi-
mations is done by relaxation only (see Section 6), which is robust and easy
to implement.

The initial approximation for the new boundary conditions is obtained by
a technique due to Mole and co-workers [20]. Starting from a solution (¢ (©,
o9, ¢, we first assume that the carrier densities do not change during
continuation, and solve the following equations for the corrections (d¢,, dé,),

—V-(dJ,) =0, (8.1a)
—V-(dJ,) =0, (8.1b)

with
dY, = =l adg,), (8.1¢)
dJ, = —ii,e™®s ¥V adg,), (8.1d)

where the change in the applied voltage is used for the boundary conditions.
The linear equations ( 8.1 ) are discretized by the mixed finite element method
as described in Section 4. The resulting system is solved iteratively by Vanka
relaxation; this iteration is stopped if the largest correction is a factor 1072
less then the change in the applied voltage.

Next, the initial approximation (¢ ‘", ¢, ¢{") is found by setting

¢ = o1 + dén,
¢5) = 05" + doy,

and ¢ @ is updated in such a way that the density of the majority charge
carries does not change, i.e.,

v =y O+ gy, in a n region,

g =y© + dg,, in a p region.

In exceptional cases, with a forward biased diode problem, we observed that
the new minority level may temporarily become larger than the new majority
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level. However, this caused no problems, because of the robustness of our
relaxation procedure.

9. NUMERICAL EXPERIMENTS

We use a 2D diode problem as a test problem for our adaptive multigrid
algorithm. The convergence behavior for uniform grids is shown in Section
9.1, and the power of local refinement is demonstrated in Section 9.2.

The problem is defined on a square [0, 107%] X [0, 10~3]. The doping
profile D describes a quarter-circle n-region diode (see Fig. 9.1):

+10'%, [x] <0.5%x 1073,
D(x) = 0, Ixll =0.5x 1073, (9.1)
—-10'8, x| >0.5x 1072

At the two contacts, indicated in Fig. 9.1 by double lines, the quasi-Fermi
potentials ¢, and ¢, are given, depending on the applied voltage V,,

0, y=0,x<025X%X 1073, (9.2)
Gn = ¢p = .
7 Va’ .V = 10-3a

and v is derived from these values, by assuming charge neutrality,
p—n+D=0. (9.3)

At the remaining parts of the boundary homogeneous Neumann boundary
conditions are assumed for all three equations.

We consider two test problems: a reverse biased (V, = +5.0 V) and a
forward biased problem (7, = —1.0 V). The numerical values for the constants
appearing in (2.1)and (2.4) are e = 1.036 X 1072, n; = 1.22 X 10'%, ¢ = 1.60
X 107", and « = 38.683.

N

F1G. 9.1. Quarter-circle diode.
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9.1. Uniform Grids

In this subsection the convergence behavior of the multigrid algorithm is
studied for the two problems on uniform grids. The coarsest grid used in the
calculations was a 4 X 4 grid. The solution of this very small coarse grid

16x16
-3 - - =332
9 ..... 64x64
Skt
log T
residual g|_

Poisson’s equation

16x16
-3 - - -32x32

log T
residual g

-
w
=
O
w
—
w

——16x16
- = -32x32

log T+
residual _g

1
1

N —
3 5 7

Continuity equation holes

F1G. 9.2. Convergence behavior, reverse biased diode (} cycles).



SOLUTION OF 2D SEMICONDUCTOR EQUATIONS 237

problem is approximated by executing 50 relaxation sweeps, thus reducing
the residual by a factor of 107>, In all multigrid cycles a single symmetric
relaxation sweep is made both before and after the coarse grid correction.
For the reverse biased problem, the convergence behavior for different
meshes is shown in Fig 9.2 (V cycles) and Fig. 9.3 (W cycles). The convergence

1k

16x16
-3 - - =32x32

Sk
log e
residual g
A1

S13 1)

-15

[ — |
1 3 5 7 9 11 13 15

Poisson’s equation

——16x16
L - - =32x32

log 1=
residual _g

I
1 3 5 7 9 11 13 15

16x16
- - =32x32

log -7
residual _g

1 3 5 7 9 11 13 15
Continuity equation holes

FIG. 9.3. Convergence behavior, reverse biased diode (W cycles).
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231 - - -3u32
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13-
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IV S N IS S R |
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Continuity equation holes

FIG. 9.4. Convergence behavior, forward biased diode (¥ cycles).

1s measured by the sup-norm of the residual, which is scaled by the corre-
sponding diagonal element of the Jacobian. In both cases it appears that Pois-
son’s equation is solved up to machine precision in only a few cycles. If W
cycles are used we find a nearly grid-independent convergence behavior.
Figures 9.4 and 9.5 show the convergence behavior for the forward biased
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FI1G. 9.5. Convergence behavior, forward biased diode (W cycles).

problem, using ¥ and W cycles. The convergence behavior for Poisson’s
equation looks irregular; it stalls until the continuity equations are solved
sufficiently accurate. Again, we find a nearly grid-independent convergence
behavior for W cycles.
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TABLE 9.1
DAMPING OF INTERACTION BETWEEN GRIDS FOR THE REVERSE BI1aSED DIODE
Cells with damping of Cells with suppression
Gnd the restricted residual of the correction
4x4 6 (=38%) 1 (=6%)
8x 8 10 (=16%) 4 (=6%)
16 X 16 16 (=6%) 7 (=3%)
32% 32 28 (=2%) 15 (=1%)

Finally, in Table 9.1 we see that the interaction between the grids is damped
only in a small percentage of the cells. This number decreases if the mesh
gets finer. Damping only occurs in the reverse biased problem. This concludes
our discussion of results obtained for uniform grids. We find a good, nearly
grid-independent, convergence behavior, by locally damping the interaction
between the grids.

9.2. Nonuniform Grids

Here we show results for calculations on a locally adapted grid. Because
well-analyzed a posteriori error estimators are not yet available for the MFEM
applied to semiconductor equations, we use an ad hoc refinement criterion,
viz. equidistribution of the second derivative of the electrostatic potential .
In fact, a cell Q! (with area a!) is split if

ail il + 2000l + (¥l > n, (9.4)
for some a priori given constant 5. The second-order derivatives in (9.4) are

approximated numerically on grid G' by means of standard three- or nine-
point stencils.

FIG. 9.6. Self-adapted grid for reverse biased diode.
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FI1G. 9.7. Plot of solution components along diagonal.

As test problem we use the reverse biased (V, = +5.0 V) diode, and take
n = 2.5 X 1072 Figure 9.6 shows the final mesh; the finest level corresponds
to a uniform 512 X 512 grid. Indeed, the cells are concentrated in the neigh-
borhood of the junction, where all three solution components have a sharp

TABLE 9.2
NUMBER OF CELLS IN ADAPTIVE GRID

Number of cells in Uniform
Level adaptive grid grid
0 16 4x4
1 32 8 X8
2 64 16 X 16
3 128 32 x 32
4 256 64 X 64
5 512 128 x 128
6 1080 256 X 256
7 2656 512 x 512
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interior layer. In Fig. 9.7 a cross section of the solution components along
the diagonal x = y is shown. We obtain a good resolution of the interior layer
by a limited number of cells, as can be seen from Table 9.2, which gives the
number of cells on different levels. As long as the coarser meshes (mesh size
h) are unable to resolve the sharp layer, we see that the number of cells is
O(h™"). Only for finer meshes are more cells introduced. So, by using local
refinement, we are able to get a good resolution of the layer, with a restricted
number of cells. Because the discrete equations are solved by a multigrid
method, our algorithm is highly efficient.
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